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1. INTRODUCTION

The problem of estimating the difference between means of a bivariate

normlialI distribut ion when some observations on either of the variables are

missing has received a great deal of attention in recent statistical litera-

ture (c.f. Wilks (1932), Anderson (1957), Hocking and Smith (1968), Mehta &

Curland (1969), Lin (1971, 1973) and Lin & Stivers (1974)). In this article

we study the problem of estimation of the difference between the location

parameters of correlated variables from fragmentary samples when the population

being sampled is not necessarily normal. More specifically, let (X,Y-e)' be

a random vector with absolutely continuous joint distribution function H

which is free of 0 and is symmetric in its arguments, i.e. H(u,v) - H(v,u),

2for (u,v) c . The marginal distribution function of X is denoted by F

and its density function f is assumed to satisfy the condition f f2 (x)dx <

Now, let (XiY)' , i = I,-.. ,n be n pairs of observations on (X,Y)';

Xn+ j , j = I, ... ,s , be s additional observations on X; Y n+k' k = , t,

be t additional observations on Y . The (Xi,Yi)' x n+j and Yn+k are

assumed to be mutually independent for i = 1, ... ,n, j = 1, ''. ,s and k =

I, ... ,t . The problem is how to use the fragmentary samples in the most

efficient way to estimate the shift parameter 6 . Gupta and Rohatgi (1979)

considered the case that X and Y are linearly related and constructed

regression estimators which are linear combinations of fragmentary sample means.

Therefore, their estimators are sensitive to outlying observations.

A simple and robust estimator 80  of 0 is proposed in Section 2. We

show that this estimator is unbiased if the underlying distribution H is

symmetric about 3ome point (pl,12 )' or the two fragmentary sample sizes are

equal, i.e., s = t. Also, it is shown that 60 is consistent and



2

asymptotically normally distributed. In Section 3 we compare the asymptotic

relative efficiency of O0  with other known estimators.

An outstanding feature of 0 is that it can be used even when the pair-

ing of X with Y., i = 1, . ,n , cannot be identified (c.f. Hollander,

Pledger, and Lin (1974)). For example, a statewide readiness test was given

at the beginning of the 1979-80 school year to every incoming first grade

public school student of South Carolina. The purpose of this test was to dis-

tinguish those students who were ready for the formal first grade curriculum

from those who were not ready. A pilot testing was conducted to obtain the

cutoff score using a random sample of South Carolina's kindergarten students at

the end of the 1978-79 school year (Garcia-Quintana & Huynh, 1980). Educators

have constantly demonstrated that in the very early years of schooling a vast

amount of a student's achievement is caused by maturation and not necessarily

by instruction. This coupled with the fact that these two tests were conducted

approximately four months apart establishes a concern as to how much the cutoff

score previously determined by the pilot test should be moved upward. So the

problem becomes estimating "maturational growth" occurred during the summer

months. However, many of the students in the pilot test cannot be identified

at the data analysis time due to various human factors. Therefore, all the

parametric and regression estimation procedures mentioned above are not valid.

A similar example was also cited by Hollander, Pledger and Lin (1974).

A

2. THE ESTIMATOR e0

For the fragmentary samples given in Section 1, denote the ordered set of

(n+s)(n+t) differences Y -X i by D(l) < D(2) <" < D ((n+s)(n+t) A

natural estimator 0  of 0 is then the median of the D's i.e.,0



(D(Z)+ D(R+))/2 , (n+s)(n+t) =2,

0 =
00

D(Z+l) , (n+s)(n+t) - 2t+ 1

First, we consider some exact small sample properties of 80

Theorem I. The distribution of the difference 0 0 - 0 is free of 0

Proof. See Appendix.

Theorem 2. The estimator 00  is distributed symmetrically about 0 if either

of the following two conditions hold:

(a) The distribution H is symmetric about some point (pi, 2

(b) The two fragmentary sample sizes are equal, i.e., s - t.

Proof. See Appendix.

This theorem shows that under the stated conditions, the estimator 0 is

unbiased. Now, let us consider the asymptotic performance of 0 .

Theorem 3. Let N - 2n+ s+ t and A1 ,A 2 ,A 3 be nonnegative numbers such that

1 + X3 
> 0, '2 

+ X3 
> 0 and X1 + X2 + 2X3 

= 1 . Then, as N

SIN - XI9 t/N - A 2 n/N X3 s the distribution of N ( 0-6) converges to

a normal distribution with mean 0 and variance

00 - F(u)F(v)dH(uv)II X +X +

Proof. See Appendix.

The above theorem also shows that 0 is consistent. We note that the
0

computation of 00 requires finding the median of the ((n+s)(n+t)) differences

0!
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Y. - X. and becomes rather tedious for a large set of data. Fortunately, therej 1

are several shortcut methods of obtaining 0 (c.f. Lehmann (1975), p. 83).

3. THE EFFICIENCY OF 0

The estimator 60 is compared with the Lin-Stivers estimator 0 (c.f.

(2.4) of Lin & Stivers (1974)), a regression estimator 02 (c.f. (9) of Gupta

n+t
& Rohatgi (1979)) and a naive estimator 0 f Y-X , where Y = Z Y/(n+t)3 il1

n+s
and X = Z X /(n+s) . All the estimators mentioned above are consistent and

i=l1

asymptotically normally distributed.

The relative efficiency of two estimators 0 = 0(N) and 0' = 8'(N') of

0 is defined as the ratio of sample sizes N and N' required for the esti-

mators to have the same probability of falling within a stated distance of 6

i.e., for a fixed constant b ,

P0 (I (N)-01 <b) -P(I('(N) <b) (3.1)

However, this approach creates a problem in the large sample case. If 0

and 0' are consistent estimators of 0 , then the limiting probability in

(3.1) of both estimators is 1. Thus it is impossible to use this probability

to provide a meaningful comparison between 8 and 8' asymptotically. To

overcome this difficulty, we propose the following definition of the asymptotic

relative efficiency of estimators.

Definition 1. Let (0(N )) and {0'(N')} be two sequences of estimators for
kk

estimating 0 . Let f0 ± b be a sequence of intervals such that klim b =

0 . In addition, let 0^(k) P(18(Nk) - 01<bk) and B-,(k) =

P0(I0'(N)_ - < bk) . Also, let {N k  and {N) be increasing sequences of

positive integers such that the two sequences of estimators have the same
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limiting value, i.e., klim (k) = klim %,(k) . Then the asymptotica

relative efficiency (ARE) of (0} and {'} is

ARE(O,O') = lir (N /Nk)

provided that this limit is the same for all such sequences {Nk I and {N'}

and independent of the {0± bk) sequence.

Although there is no explicit statement concerning the rate of convergence

of the sequence b k ) in the above definition, we are particularly interested

in the sequence {0±b } with b - a/N 4k = a'//Nk . where a and a' are
k k k k'

some fixed constants. If both random variables ANF(6-8) and 4i(O'-O) are
k k

asymptotically normally distributed with mean 0 and variances and o1,

2 2
respectively, then it can be shown that ARE(6,6') -- ao^ which is the

conventional definition of ARE of estimators e and 0' provided that

lim AN (60) = j and lim 4'T(61-0) q, (c.f. Randles and Wolfe
k -+ aD k k -k

(1979), p. 227).

Several bivariate distributions were considered for H in the comparison

study:

(a) A bivariate normal distribution with unit variances and correlation

coefficient p

(b) A bivariate logistic distribution (Cumbel (1961)). The joint distri-

bution function is

H(u,v) - F(u)F(v)l1+ al1-F(u))fl-F(v)) I

where -1 !5 a _ 1 , F(u) - (1+e-U) - , and the correlation coeffi-

2
cient p - 3a/w.
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(c) A bivariate exponential distribution (Cumbel (1960)). The joint

distribution function is

H(u,v) = F(u)F(v)I I +a(l-F(u)) (l-F(v))i , where

FO) = 1-e-' and the correlation coefficient p = a/4

The advantage of using Gumbel's bivariate distributions for our comparison

2
study is that the asymptotic variance G8 of O0 in Theorem 3 has a closed

form. For each family of bivariate distributions mentioned above and a group

of selected values of p , the asymptotic relative efficiencies ei =

ARE(60 ,0.) , i = 1,2,3, were computed. Table 1 provides the computational

results for A = .1, 2 = 1 and X = .4. Compared with 0i P i = 1,2,3,

O0 does much better for heavy tail distributions as is to be expected because

o 1i i 1,2,3) is a linear combination of fragmentary sample means. In partic-

ular, if H is a bivariate Cauchy distribution (c.f. Johnson & Kotz (1976),

p. 295) which is not shown in Table 1, the ARE(0, i ) 0, i fi 1,2,3 . For

normal and logistic distributions, 00 performs as well as 0 (i = 1,2,3)

except for large values of p

Results similar to Table 1 were also found for other combinations of Xi

i = 1,2,3. Here, we only report a case when there is a large fraction of

missing observations in the data (see Table 2).

4. APPENDIX

Proof of Theorem 1. The error of estimator 0 0 - med (Y J-X) - e can also

be written as med(Yj-0-X ) . Since the joint distribution of (XYi-OY

Xn+j , and Yk-0 , i = 1, " ,n, J - 1, ,s , k = 1,-.. ,t is free of

0 , the same is true for the distribution of 00 - 0 .
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Proof of Theorem 2. By Lemma I, for any real number a, P0 (e0 -8< a) =

P (0 < a) . Without loss of generality, we can assume that 0 = 0

(a) Since H is symmetric in its arguments, 01 = 2 = P " Also, since

00 = ined(Yj-X i) , we can assume that p = 0. It follows that

(XY' , n+ , and Y have the same joint distribution as1 1 fln+k

(-Xi,-Y)' , -Xn+ j , and -Y1+k 9 i 1, ''. n , j s

k =  *,- ,t This implies that 00 and -00 have the same distri-

bution and 00 is symmetric about 0

(b) If s = t and e = 0, then (XiYi) , Xn+j , and Yn+k have the

same joint distribution as (YiX) ' Yn+j I and Xn+k , i 
= 1, - ,n

j,k = I, "-. ,s . Hence, 00 and -0 have the same distribution.

Two lemmas are needed to prove Theorem 3. First, let us define a scoring

function $ for comparing two observations X and Y by

I 1 , i < Yj ,
4 (Xi,Y.)= l X 1 Y

(a, otherwise

n+s n+t= '1 (xi j
and Wx Y  i=l j=l '

Lemma 1. For any real number a and integer i between 1 and (n+s)(n+t),

the Ith ordered difference D M a if and only if WX,y-a -< (n+s)(n+t) - i

Proof. C. f. Theorem 4 of Chapter 2, p. 87, of Lehmann (1975).

Lemma 2. For 0 = 0 and a positive real a , the distribution of

((n+s)(n+t)N)- ' (Wxy _ a/ - (n+s)(n+t)pl) converges to a normal distribution

with mean 0 and variance T2  1/12 + X3( - 2 F(u)F(v)dH(u,v)) , as N + ,

rI
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s/N - X1  t/N + A , n/N - A 3 where p, = f F(u+a/'N)dF(u) and F(')

1i- F(-)

Proof. For convenience, let us define a sequence of fragmentary samples

( X l m Y l ) ' ( x n  , m Y n m x • X" " X n Y n
, ) ' I'm (X ~ nm n +1,m' ' n +s , m; n +1,m

m m ,m x m in

Y n ,m+tin where (X. ,Y + a/WN M-)' has distribution function H

1i = , ,nm , N = 2n +s + tm) , X. and Y. have distribution func-m m inm i,m n,

tions F(x) and F(y+a/vN) , i = 1, ,nm +s m , j = ,. ,n m+tm

respectively, and s m/Nm - 9 t /Nm 2 ) n m/Nm 3 , as m 00

Furthermore, we assume that (X. ,Y. )' , X nmJ, and Y are

mutually independent for i = ,.- ,nm , = 1, ... ,s i

k = t, ,t and (Xl Ym)' = (U,V- a/A)' ' m -> 1 , where (U,V)' has
in lm' I'm in

distribution function H

Now, let P],m = f F(u+a/N m)dF(u)

n +s n +t1-2 m m )
(nm+sm)(n+t )N l I (Xi'Ym) P I '

i=1 j=1

n +s

n n+t'' = (n +) ( F1 (i a14(XinaA)Pr) +

nMSm m m", .

I-) ( ( F(Y ,p)) and

g(Xi,Y) -' (4 (X 1MY) J i' m -' (X,'m + a/b'I m 1'

F(Y I
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Then, it follows from the argument provided by Hollander, Pledger and Lin (1974,

p. 179) that

n +s n +t
mm m m((n+sm) (nm+t )N)- E 0

mm m g(imY M)

1=1 j=l

as m x Thus, W * and T * have the same limiting distribution.
m m

To show that T m is asymptotically normal, we rewrite T * as the summ m

of three independent, normalized sums of bounded random variables:

n

rm = 'n +tml m 1
m i(nm+s )Nmi i l (i+(X +a/ v -Plm + [ m Jm m m i= m

n n +s

F(Yi )-Pl (nt~s)N y (~( +/ ) -P~m4
i1m m m 1

mn +t

ji[n+m9 ] >4m (F(Yj~Ym)+1 ~ )l
+ n(n +t )NN (Fn F -,

T m o m in +r

m

of Berry-Ess~en Theorem (c.f. Chung (1968), Theorem 7.1.2., p. 185). The

asymptotic variance of Tm* can be obtained through the fact that (Xl  ,Yl  )'=

(U,V-a/AcrN-)' ,m > 1 and (U,V)' has distribution H.
m

[Tn"~N 
-si2F()

Proof of Theorem 3. By Lemma 1, for any real a , P( ( < <a) =

P (NM< a) = PO (6< a/vN) . Without loss of generality, we can assume that

O = 0 . Consider first the case (n+s)(n+t) 2t+l . By Lemmas 2 and 3 and

the fact that f f2 (v)dv < (c.f. Olshen (1967) and Mehra & Sarangi (1967)),
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a(//iy N (n+s)(n+t)+ 1)
10 ( )( k ) < a / , ") = 11 X Y - / N 2

Po (n+s)(n+t)N)-'2 (Wxy / (n+s)(n+t)Pl)< F(n+s)(n+t)' ]N 1
0((XY- abNN2

f F (u +a / ) dF(u))]~ ,*- ' (a (X 4+Xd) ('3+A2  f f 2(v)dv/l)

as N - , s/N - X1, t/N X 2 9 n/N - A3 where D is the distribution

f inct ion of N(O,1)

In the case (n+s) (n+t) = 2k , the probability P 0(0 <a/w4N) is bounded

below and above by P 0(D(+) < a//rN) and P 0(D(,)< a/rN) By the same argu-

ment, it can be shown that these two probabilities have the same limiting

valut, I:( +1' +2 f 2 (v)dv/Ti)
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TABLE 1. THE ASYMPTOTICAL RELATIVE EFFICIENCY ei , i = 1,2,3.

( . X 2 = .I X 3 .4)

THE DISTRIBUTION H

Correlation Bivariate Bivariate Bivariate

Coefficient normal logistic exponential

eI  e2  e3  eI  e2  e3  eI  e2  e3

-.8 .91 .91 .96 1.00 1.00 1.05 3.26 3.26 3.45

-.6 .93 .93 .96 1.03 1.03 1.06 3.26 3.25 3.36

-. 4 .95 .95 .96 1.05 1.06 1.07 3.21 3.22 3.26

-.2 .96 .96 .96 1.08 1.08 1.08 3.13 3.14 3.14

0.0 .96 .96 .95 1.10 1.10 1.10 3.00 3.02 3.00

.2 .94 .95 .95 1.11 1.12 1.12 2.80 2.82 2.82

.4 .90 .91 .94 1.10 1.11 1.15 2.49 2.51 2.59

.6 .81 .82 .93 1.05 1.06 1.20 2.01 2.02 2.29

.8 .61 .62 .93 .88 .88 1.32 1.25 1.25 1.88



TABLE 2. THE ASYMPTOTICAL RELATIVE EFFICIENCY e. , i = 1,2,3.
1

(A, = .2 A2 = .2 X = 3)

THE DISTRIBUTION H

Correlation Bivariate Bivariate Bivariate
Coefficient normal logistic exponential

P e e2  e3  eI  e2  e3  eI  e2  e3

-.8 .88 .89 .96 .98 .98 1.06 3.10 3.11 3.36

-.6 .91 .93 .96 1.01 1.03 1.07 3.12 3.17 3.29

-.4 .94 .96 .96 1.05 1.08 1.08 3.12 3.21 3.21

-.2 .95 .99 .96 1.08 1.12 1.09 3.09 3.22 3.11

0.0 .95 1.01 .95 1.10 1.16 1.10 3.00 3.16 3.00

.2 .94 1.00 .95 1.10 1.17 1.11 2.84 3.01 2.87

.4 .89 .94 .94 1.06 1.13 1.13 2.55 2.71 2.71

.6 .77 .82 .94 .95 1.01 1.16 3.08 2.19 2.53

.8 .53 .55 .94 .68 .71 1.20 1.30 1.34 2.29
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